How Google's robo-cars mean the end of driving as we know it
Why waste your drive time doing the actual driving, when technology can be your chauffeur? The century-old auto culture is on the verge of radical change, and you can thank Google for where it's headed.
(Credit: Google) Google's self-driving car initiative is moving into a new phase: reality.
Three years after first showing the world what it was up to -- rolling out a Toyota Prius with laser-scanning hardware awkwardly perched on the roof -- Google is moving its big idea out of the lab and into the real world.
Consider recent developments: A spokesman confirmed to CNET that the company was in what were described as productive talks with automakers involving Google's self-driving technology. Separately, Google is reported to be crafting a partnership with auto supplier Continental. And there's even the possibility of Google-powered robo-taxis sometime in the future.
The computerization of cars
Motivation aside, a big change is unde way, and it requires us to start thinking of cars very differently. Vehicles that drive themselves are the clearest example of what happens when cars transform into full-scale, general-purpose computing systems. But it's not the only example. Self-driving and connected cars will bristle with sensors, negotiate with traffic lights, talk to each other about safety conditions, join into train-like platoons, and become members of intelligent urban transit networks.
Historically, the car industry has focused on passive safety -- items like seatbelts and airbags. With the arrival of active safety technology that lets vehicles take pre-emptive action, cars will use data to help them decide what to do when drivers aren't paying attention or don't know what to do.
Computing today uses a handful of networks for different circumstances -- Wi-Fi, 3G, 4G, and Bluetooth among them. When automotive computing becomes a facet of personal computing, you can expect those standards to carry over. But then you can add some new network technologies designed to serve vehicles. The biggest are the 802.11p and the accompanying higher-level dedicated short-range communications (DSRC) standards, which govern how vehicles communicate with each other (V2V) and with infrastructure (V2I).
That technology, which rides the 5.9GHz frequency range for radio communications, can be used for things like collision avoidance, managing traffic at intersections, and linking cars into coordinated, fuel-efficient groups called platoons. Carmakers, however, are worried about interference on the 5.9GHz band if the US Federal Communications Commission permits other uses of the spectrum.
SOURCE:CNET